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Three basic problems that we 
would like to be able to solve.

3



The Uncertainty Propagation Problem 
(reconstructive surgery)

1860 T. Lee et al.

Table 1 Range of HGO parameters based on Annaidh et al. (2012) and
Tonge et al. (2013)

Parameter Range Mean

µ (MPa) [0.004774, 0.2014] 0.04498

k1 (MPa) [0.000380, 24.530] 4.9092

k2 (–) [0.133, 161.862] 76.64134

with a large dispersion (Annaidh et al. 2012; Tonge et al.
2013); hence, approximating κ = 1/3 is reasonable. Table 1
summarizes the range of HGO model parameters for human
skin based on the literature (Annaidh et al. 2012; Tonge et al.
2013).

To showcase the nonlinearity of the material response
and the effect of uncertain material properties, we show the
stress–stretch curves for three different tensile tests: uni-
axial, off-biaxial, and equibiaxial. Analytical solutions are
easily computed for these cases, and incompressibility can
be imposed exactly. We use λxx , λyy , and λzz to indicate the
amount of stretch with respect to the x, y, and z directions,
respectively. The corresponding normal stresses are σxx , σyy ,
and σzz . The uniaxial test is defined by setting σyy = σzz = 0
and varying λxx . In the off-biaxial case, we set σzz = 0 and
λyy = 1. For the equibiaxial case, σzz = 0 and λyy = λxx .
Solid lines in Fig. 1 correspond to thematerial responsewhen
the parameters are chosen to be the mean reported in Table 1.
To showcase the importance of material parameter uncer-
tainty in these simple scenarios, the parameters are assumed
uniformly distributed over the range presented in Table 1,
and 5000 values of the parameters are sampled. The gradient
shading in the plots of Fig. 1 represents varying percentile
from 2.5 to 97.5 of the resulting stress distribution.

2.2 Patient-specific model

In this study, we present the case of a 7-year-old female
who underwent resection of two large portions of the scalp
together with cranioplasty. The patient originally had resec-
tion of a giant congenital pigmented nevus in infancy thatwas
complicated by infection and led to the debridement of the
occipital calvarium. At the time of the treatment presented
here, the patient needed correction of the contour deformity
of the cranium, had residual nevus at the incision, and unsta-
ble scar with ulceration in two regions of the scalp. During
the surgery, an occipital Y-shaped scar and a right tempo-
ral C-shaped scar were resected, and the cranium defect was
fixed with a polymer implant.

We useMVS to capture the three-dimensional (3D) geom-
etry of the patient at different time points of the treatment.
MVS is based on capturing two-dimensional (2D) pictures of
a static object or scene from multiple angles. Feature match-
ing across pairs of photographs then provides information to
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Fig. 1 Analytical solution of a uniaxial tensile test, b off-biaxial tensile
test, and c equibiaxial tensile test to showcase the HGO model. 5000
triads (µ, k1, k2) are drawn from a uniform distribution over the range
in Table 1. The gradient shading indicates varying percentile of stress
value at each stretch

solve for the camera position and orientation, and once this is
solved for many more points can be projected and matched
between photographs to generate a dense 3D point cloud
(Strecha et al. 2008). Geometries generated with Recap360
(Autodesk, San Rafael, CA) are shown in Fig. 2 (first row).
Photographs were taken pre-, intra- and postoperatively in
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Fig. 2 For multi-view stereo (MVS) reconstruction, photographs cap-
tured from several angles are used to generate a 3D geometry (first
row); a CT scan was used to generate the skull geometry (second row);
skin after tissue expander removal was assumed stress-free and used as
reference, and the MVS and CT scan geometries were combined and
simplified (third row); scalp defects were removed based on the intra-
operative MVS models, and the scalp mesh was converted to a volume
mesh (fourth row)

order to document the entire treatment with 3D snapshots.
Importantly, skin, like most biological tissues, is prestrained
in vivo. Skin after expander removal is in a relaxed config-
uration, and this geometry was taken as the reference and
assumed stress-free.

In addition to the visible patient-specific geometry
obtained with MVS, this particular case was not limited to
superficial tissue rearrangement but required correction of
the cranium. We reconstructed the skull geometry from a
CT scan that had been used clinically to design the polymer
implant (Fig. 2, second row).

As shown in Fig. 2 (third row), we performed some
post-processing steps to eliminate unnecessary parts and
simplify the patient-specific geometry without losing any
essential information. Geometry simplification was done
withMeshlab (Cignoni et al. 2008) andBlender (Amsterdam,
the Netherlands). The Y-shaped scar and right temporal C-
shaped scar were removed in our virtual procedure based on
the 3Dmodels taken intra-operatively. The triangular surface
was converted to a volumetric mesh by considering a thick-
ness of 3.6 mm. This value of thickness has been reported
for young females (Garn et al. 1954). The skin consisted
of 9962 nodes and 30,328 tetrahedral elements. Finally, the
simplified skull, which consisted of 6807 nodes and 13,608

triangular elements, was positioned inside the scalp mesh as
shown in Fig. 2 (last row).

2.3 Finite element simulations

We used Abaqus Standard (Dassault Systems, Waltham,
MA), an implicit nonlinear FE commercial software pack-
age, to run the reconstructive surgery simulations. The skull
mesh was defined as a rigid body and its position fixed. The
skin was modeled as hyperelastic and described by the HGO
strain energy function. To prevent rigid body motions and
also to capture a realistic procedure, the skin away from the
operated region was fixed.

Interaction between the scalp and skull during the surgi-
cal procedure was modeled as frictionless contact. Sutures
were imposed as axial kinematics constraints between pairs
of nodes. Namely, the nodes at the edge of both sides of a
scar were paired, and the distance between themwas linearly
decreased to simulate the clinical procedure.

2.4 Gaussian process regression

Mechanical properties of skin vary not only with age, gender,
and anatomical location, but also from one patient to another
(Daly and Odland 1979). Therefore, accounting for uncer-
tainty in the material properties of skin is essential when
analyzing the stress distribution caused by reconstructive
surgery. Propagating the uncertainty of the material behavior
through a detailed, realistic, and nonlinearmodel of a surgical
procedure, to characterize the resulting stress distribution, is
the central contribution of this manuscript.

As pointed out in Sect. 2.1, the HGOmodel requires three
independent parameters, µ, k1, and k2, when the material
under consideration is assumed isotropic.Table 1 contains the
mean and the range for each parameter. We assume that the
parameters are uniformly distributed within the range shown
in Table 1, and we use the Latin hypercube sampling algo-
rithm (LHS) to draw samples from this 3D parameter space
(McKay et al. 2000). We generate a total of N training sam-
ples in the parameter space. N should be chosen such that it
covers the parameter space and is able to capture themain fea-
tures of the data. In practice, given an initial choice of N , the
performance of the surrogate is evaluated in terms of a given
errormeasure to test if it is within a desirable tolerance. If this
is not the case, the training set is increased iteratively until
the desired error is achieved. Let x(n) = (µ(n), k(n)1 , k(n)2 ) be
one point generated by LHS, the total training data can be
arranged as

X =
(
x(1), . . . , x(N )

)
∈ R3×N . (12)
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Fig. 10 Prediction of stress distributions with the GPR for three differ-
ent input distributions of thematerial properties x1, x2, and x3.When x1,
x2, and x3 are knownwith 100% confidence (b), the predicted PC scores
follow a normal distribution (c). The mean and upper and lower bounds
of the 95% confidence interval of the von Mises stress are visualized
in (a). When the parameters are normally distributed (e), 103 PDFs of
predicted PC scores are generated by sampling the GPR for a vector

of the normally distributed inputs, leading to the mean and 95% error
bars of the PDFs for z1, z2, and z3 (f), and to the corresponding 95%
confidence interval of the von Mises stress (d). A uniform distribution
of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i)
and confidence interval of the von Mises stress (g)

123

Propagation of material behavior uncertainty in a nonlinear finite element model of… 1869

a

b c

d

e

g

h i

f

Fig. 10 Prediction of stress distributions with the GPR for three differ-
ent input distributions of thematerial properties x1, x2, and x3.When x1,
x2, and x3 are knownwith 100% confidence (b), the predicted PC scores
follow a normal distribution (c). The mean and upper and lower bounds
of the 95% confidence interval of the von Mises stress are visualized
in (a). When the parameters are normally distributed (e), 103 PDFs of
predicted PC scores are generated by sampling the GPR for a vector

of the normally distributed inputs, leading to the mean and 95% error
bars of the PDFs for z1, z2, and z3 (f), and to the corresponding 95%
confidence interval of the von Mises stress (d). A uniform distribution
of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i)
and confidence interval of the von Mises stress (g)

123

Propagation of material behavior uncertainty in a nonlinear finite element model of… 1869

a

b c

d

e

g

h i

f

Fig. 10 Prediction of stress distributions with the GPR for three differ-
ent input distributions of thematerial properties x1, x2, and x3.When x1,
x2, and x3 are knownwith 100% confidence (b), the predicted PC scores
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of the 95% confidence interval of the von Mises stress are visualized
in (a). When the parameters are normally distributed (e), 103 PDFs of
predicted PC scores are generated by sampling the GPR for a vector

of the normally distributed inputs, leading to the mean and 95% error
bars of the PDFs for z1, z2, and z3 (f), and to the corresponding 95%
confidence interval of the von Mises stress (d). A uniform distribution
of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i)
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Inverse Problem Example (Cerebral aneurysm)

Navier-Stokes

re-entering the distal ICA. About half of the flow exits through
themiddle cerebral artery and the remainder splits between the
anterior cerebral artery and posterior communicating artery.
The swirling flow in the aneurysmal sac was qualitatively simi-
lar for the 4D flow andCFD,while for the STB, the swirlingwas
more centred in the sac and the impinging jet was weaker. The
velocity distributions in the aneurysmal sac for all modalities
throughout the pulsatile cycle are shown in figure 4c–e
for the basilar tip aneurysm and in figure 4f–h for the ICA
aneurysm. The distributions highlight some velocity field
differences across the modalities. Similar velocity distributions
and velocity ranges were observed across all modalities for
the basilar tip aneurysm. For the u-velocity component, 95%
confidence interval (CI) ranges were ±11.4 cm s−1 for 4D flow,
±10.5 cm s−1 for STB and ±10.6 cm s−1 for CFD. For the
v-velocity component, the 95% CI ranges were ±23.7, ±22.9
and ±22.6 cm s−1 for 4D flow, STB and CFD, respectively.
The ranges for the w-velocity were ±13.9 cm s−1 for 4D flow,
±14.7 cm s−1 for STB and ±14.5 cm s−1 for CFD. In the ICA
aneurysm, all modalities maintained similar distribution
shapes; however, STB maintained lower magnitude ranges of
the velocity distributions than 4D flow and CFD. For example,
for the u-velocity component, STB maintained a 95% CI range
of ±6 cm s−1 while 4D flow MRI and CFD maintained 95% CI
ranges of ±14 cm s−1. For the v-velocity, 95% CI ranges were
±9 cm s−1 for STB and ±17 cm s−1 for 4D flow and CFD while
for the w-velocity, they were ±6 cm s−1 for STB, ±7 cm s−1 for
CFD and ±8 cm s−1 for 4D flow.

3.2. Evaluating time-averaged wall shear stress,
oscillatory shear index and relative residence time
across modalities and spatial resolutions

The previous results demonstrate that each modality rep-
resented the same underlying process, maintaining similar

large-scale flow features but with notable flow-field variations
resulting from uncertainties in the segmentation and boundary
conditions, aswell as differing spatio-temporal resolution, flow
properties and regime assumptions, and limitations across
modalities. Next, the effects of such variations on subsequent
haemodynamic metrics were evaluated.

Figure 5 shows the distributions of TAWSS, OSI and RRT
in the aneurysmal sac for all modalities for the basilar tip
aneurysm (figure 5a–c) and ICA aneurysm (figure 5d–f ).
The distributions of the TAWSS varied significantly across
all five datasets. For the basilar tip aneurysm, the average
TAWSS was 6.19 dynes cm−2 for the 4D flow, 13.88 dynes
cm−2 for the full resolution STB and 11.61 dynes cm−2 for
the full resolution CFD. When voxel averaged, the average
TAWSS decreased to 5.88 dynes cm−2 for the STB, a 58%
drop, and to 6.81 dynes cm−2 for the CFD, a 41% decrease.
For the ICA aneurysm, the TAWSS distributions of the 4D
flow, full resolution STB, and VA STB and CFD showed
agreement. The average TAWSS for STB had only a small
change from 4.06 to 3.40 dynes cm−2 when voxel averaged.
The average CFD TAWSS decreased 70% from 8.25 to
2.46 dynes cm−2 when voxel averaged. The full resolution
CFD WSS distribution maintained a larger spread of WSS
values than all other modalities and maintained the largest
WSS magnitudes. Similar OSI distributions for the basilar
tip aneurysm were observed for all modalities except the
full resolution CFD. The average OSI of the STB changed
from 0.17 to 0.08, while CFD went from 0.04 to 0.07 when
voxel averaged. For the ICA aneurysm, good agreement of
the OSI distribution and averages was observed between
4D flow and STB. The VA STB and CFD and full resolution
CFD OSI distributions and averages matched well. Voxel
averaging changed the average OSI from 0.18 to 0.06 for
STB and from 0.06 to 0.08 for CFD. The average RRT in the
basilar tip aneurysm was 0.55, 0.47 and 0.29 (dynes cm−2)−1

for the 4D flow, and full resolution STB and CFD,
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Figure 4. Velocity field instantaneous streamlines for the MRI and full resolution STB and CFD at peak systole for the (a) basilar tip aneurysm and (b) ICA aneurysm. (Note:
the two aneurysm geometries (a) and (b) are not shown at the same spatial scale.) Distributions of all velocity components throughout the entire pulsatile cycle, spatially
limited to the aneurysmal sac only for the (c–e) basilar tip and ( f–h) ICA aneurysm. The width of the probability density function (PDF) shows relative distribution density.
The mean and median values, IQRs and 95% CIs are indicated. Violin plots were made from code adapted from [39]. (Online version in colour.)
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re-entering the distal ICA. About half of the flow exits through
themiddle cerebral artery and the remainder splits between the
anterior cerebral artery and posterior communicating artery.
The swirling flow in the aneurysmal sac was qualitatively simi-
lar for the 4D flow andCFD,while for the STB, the swirlingwas
more centred in the sac and the impinging jet was weaker. The
velocity distributions in the aneurysmal sac for all modalities
throughout the pulsatile cycle are shown in figure 4c–e
for the basilar tip aneurysm and in figure 4f–h for the ICA
aneurysm. The distributions highlight some velocity field
differences across the modalities. Similar velocity distributions
and velocity ranges were observed across all modalities for
the basilar tip aneurysm. For the u-velocity component, 95%
confidence interval (CI) ranges were ±11.4 cm s−1 for 4D flow,
±10.5 cm s−1 for STB and ±10.6 cm s−1 for CFD. For the
v-velocity component, the 95% CI ranges were ±23.7, ±22.9
and ±22.6 cm s−1 for 4D flow, STB and CFD, respectively.
The ranges for the w-velocity were ±13.9 cm s−1 for 4D flow,
±14.7 cm s−1 for STB and ±14.5 cm s−1 for CFD. In the ICA
aneurysm, all modalities maintained similar distribution
shapes; however, STB maintained lower magnitude ranges of
the velocity distributions than 4D flow and CFD. For example,
for the u-velocity component, STB maintained a 95% CI range
of ±6 cm s−1 while 4D flow MRI and CFD maintained 95% CI
ranges of ±14 cm s−1. For the v-velocity, 95% CI ranges were
±9 cm s−1 for STB and ±17 cm s−1 for 4D flow and CFD while
for the w-velocity, they were ±6 cm s−1 for STB, ±7 cm s−1 for
CFD and ±8 cm s−1 for 4D flow.

3.2. Evaluating time-averaged wall shear stress,
oscillatory shear index and relative residence time
across modalities and spatial resolutions

The previous results demonstrate that each modality rep-
resented the same underlying process, maintaining similar

large-scale flow features but with notable flow-field variations
resulting from uncertainties in the segmentation and boundary
conditions, aswell as differing spatio-temporal resolution, flow
properties and regime assumptions, and limitations across
modalities. Next, the effects of such variations on subsequent
haemodynamic metrics were evaluated.

Figure 5 shows the distributions of TAWSS, OSI and RRT
in the aneurysmal sac for all modalities for the basilar tip
aneurysm (figure 5a–c) and ICA aneurysm (figure 5d–f ).
The distributions of the TAWSS varied significantly across
all five datasets. For the basilar tip aneurysm, the average
TAWSS was 6.19 dynes cm−2 for the 4D flow, 13.88 dynes
cm−2 for the full resolution STB and 11.61 dynes cm−2 for
the full resolution CFD. When voxel averaged, the average
TAWSS decreased to 5.88 dynes cm−2 for the STB, a 58%
drop, and to 6.81 dynes cm−2 for the CFD, a 41% decrease.
For the ICA aneurysm, the TAWSS distributions of the 4D
flow, full resolution STB, and VA STB and CFD showed
agreement. The average TAWSS for STB had only a small
change from 4.06 to 3.40 dynes cm−2 when voxel averaged.
The average CFD TAWSS decreased 70% from 8.25 to
2.46 dynes cm−2 when voxel averaged. The full resolution
CFD WSS distribution maintained a larger spread of WSS
values than all other modalities and maintained the largest
WSS magnitudes. Similar OSI distributions for the basilar
tip aneurysm were observed for all modalities except the
full resolution CFD. The average OSI of the STB changed
from 0.17 to 0.08, while CFD went from 0.04 to 0.07 when
voxel averaged. For the ICA aneurysm, good agreement of
the OSI distribution and averages was observed between
4D flow and STB. The VA STB and CFD and full resolution
CFD OSI distributions and averages matched well. Voxel
averaging changed the average OSI from 0.18 to 0.06 for
STB and from 0.06 to 0.08 for CFD. The average RRT in the
basilar tip aneurysm was 0.55, 0.47 and 0.29 (dynes cm−2)−1

for the 4D flow, and full resolution STB and CFD,
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Figure 4. Velocity field instantaneous streamlines for the MRI and full resolution STB and CFD at peak systole for the (a) basilar tip aneurysm and (b) ICA aneurysm. (Note:
the two aneurysm geometries (a) and (b) are not shown at the same spatial scale.) Distributions of all velocity components throughout the entire pulsatile cycle, spatially
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re-entering the distal ICA. About half of the flow exits through
themiddle cerebral artery and the remainder splits between the
anterior cerebral artery and posterior communicating artery.
The swirling flow in the aneurysmal sac was qualitatively simi-
lar for the 4D flow andCFD,while for the STB, the swirlingwas
more centred in the sac and the impinging jet was weaker. The
velocity distributions in the aneurysmal sac for all modalities
throughout the pulsatile cycle are shown in figure 4c–e
for the basilar tip aneurysm and in figure 4f–h for the ICA
aneurysm. The distributions highlight some velocity field
differences across the modalities. Similar velocity distributions
and velocity ranges were observed across all modalities for
the basilar tip aneurysm. For the u-velocity component, 95%
confidence interval (CI) ranges were ±11.4 cm s−1 for 4D flow,
±10.5 cm s−1 for STB and ±10.6 cm s−1 for CFD. For the
v-velocity component, the 95% CI ranges were ±23.7, ±22.9
and ±22.6 cm s−1 for 4D flow, STB and CFD, respectively.
The ranges for the w-velocity were ±13.9 cm s−1 for 4D flow,
±14.7 cm s−1 for STB and ±14.5 cm s−1 for CFD. In the ICA
aneurysm, all modalities maintained similar distribution
shapes; however, STB maintained lower magnitude ranges of
the velocity distributions than 4D flow and CFD. For example,
for the u-velocity component, STB maintained a 95% CI range
of ±6 cm s−1 while 4D flow MRI and CFD maintained 95% CI
ranges of ±14 cm s−1. For the v-velocity, 95% CI ranges were
±9 cm s−1 for STB and ±17 cm s−1 for 4D flow and CFD while
for the w-velocity, they were ±6 cm s−1 for STB, ±7 cm s−1 for
CFD and ±8 cm s−1 for 4D flow.

3.2. Evaluating time-averaged wall shear stress,
oscillatory shear index and relative residence time
across modalities and spatial resolutions

The previous results demonstrate that each modality rep-
resented the same underlying process, maintaining similar

large-scale flow features but with notable flow-field variations
resulting from uncertainties in the segmentation and boundary
conditions, aswell as differing spatio-temporal resolution, flow
properties and regime assumptions, and limitations across
modalities. Next, the effects of such variations on subsequent
haemodynamic metrics were evaluated.

Figure 5 shows the distributions of TAWSS, OSI and RRT
in the aneurysmal sac for all modalities for the basilar tip
aneurysm (figure 5a–c) and ICA aneurysm (figure 5d–f ).
The distributions of the TAWSS varied significantly across
all five datasets. For the basilar tip aneurysm, the average
TAWSS was 6.19 dynes cm−2 for the 4D flow, 13.88 dynes
cm−2 for the full resolution STB and 11.61 dynes cm−2 for
the full resolution CFD. When voxel averaged, the average
TAWSS decreased to 5.88 dynes cm−2 for the STB, a 58%
drop, and to 6.81 dynes cm−2 for the CFD, a 41% decrease.
For the ICA aneurysm, the TAWSS distributions of the 4D
flow, full resolution STB, and VA STB and CFD showed
agreement. The average TAWSS for STB had only a small
change from 4.06 to 3.40 dynes cm−2 when voxel averaged.
The average CFD TAWSS decreased 70% from 8.25 to
2.46 dynes cm−2 when voxel averaged. The full resolution
CFD WSS distribution maintained a larger spread of WSS
values than all other modalities and maintained the largest
WSS magnitudes. Similar OSI distributions for the basilar
tip aneurysm were observed for all modalities except the
full resolution CFD. The average OSI of the STB changed
from 0.17 to 0.08, while CFD went from 0.04 to 0.07 when
voxel averaged. For the ICA aneurysm, good agreement of
the OSI distribution and averages was observed between
4D flow and STB. The VA STB and CFD and full resolution
CFD OSI distributions and averages matched well. Voxel
averaging changed the average OSI from 0.18 to 0.06 for
STB and from 0.06 to 0.08 for CFD. The average RRT in the
basilar tip aneurysm was 0.55, 0.47 and 0.29 (dynes cm−2)−1
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The spread of OSI points was relatively symmetric, demon-
strating no significant proportional differences. The average
RRT difference was 0.48 (dynes cm−2)−1 for the STB and
0.35 (dynes cm−2)−1 for the CFD in the basilar tip aneurysm,
and 1.83 and 0.51 (dynes cm−2)−1 for the STB and CFD,
respectively, in the ICA aneurysm. A proportional difference
was observed with the RRT, but in this case, the RRT of the
VA datasets was larger in magnitude than that of the full
resolution. Thus, figure 7 confirms the varying behaviour
and sensitivity of each metric to spatial resolution.

The Bland–Altman analysis was performed to specifically
compare the in vitro and in silico TAWSS, OSI and RRT in the
aneurysmal sac to that of the in vivo 4D flow data as well as
how the spatial resolution of the in vitro and in silico datasets
affects the comparison (figure 8). In the basilar tip aneurysm
(figure 8a), the mean TAWSS difference was −8.19 and
−5.05 dynes cm−2 for STB and CFD, respectively. This chan-
ged to 0.36 dynes cm−2 for STB-VA and −0.49 dynes cm−2

for CFD-VA. The 95% CIs for the VA data reduced in range
by 54% for STB and 34% for CFD when compared with the
full resolution intervals. Similarly, for the ICA aneurysm
(figure 8b), the mean TAWSS difference was −1.12 dynes
cm−2 for STB and −7.86 dynes cm−2 for CFD. The 95% CI
limits reduced by 49 and 64% for STB-VA and CFD-VA,
respectively, when compared with the full resolution data.
Thus, the VA datasets generally maintained a better match
to the 4D flow TAWSS than the full resolution datasets. For
OSI, the mean difference was −0.05 and 0.06 for STB and
CFD, respectively, in the basilar tip aneurysm. Voxel aver-
aging had a small effect, where the mean difference
changed to 0.04 for STB and to 0.03 for CFD, while the 95%
CIs reduced by only 9% for STB and 17% for CFD. Mean
OSI differences of 0.01 for STB, 0.10 for STB-VA, 0.11 for
CFD and 0.07 for CFD-VA were observed in the ICA aneur-
ysm. The interval ranges decreased by 29% when voxel
averaged for the STB and increased by 36% when voxel

averaged for the CFD. In the basilar tip aneurysm, the
mean RRT difference was 0.16 and −0.45 (dynes cm−2)−1 for
the full resolution and VA STB, respectively, and 0.24 and
0.17 (dynes cm−2)−1 for the full resolution and VA CFD,
respectively. The CI ranges increased fivefold for the STB
when voxel averaged and threefold for the CFD when
voxel averaged. For the ICA aneurysm, the mean RRT differ-
ence was 0.33 (dynes cm−2)−1 for the full resolution STB and
−0.13 (dynes cm−2)−1 for the VA STB. The mean RRT differ-
ence was 0.97 and −0.50 (dynes cm−2)−1 for the full
resolution and VA CFD, respectively. The CIs maintained
about a fourfold increase in range for the VA STB dataset
when compared with the full resolution while the CFD
maintained about a sevenfold increase.

4. Discussion
In this work, the effects of spatio-temporal resolution and vary-
ing flow assumptions and limitations across modalities on
resultant haemodynamic metrics were assessed. The unique
implementation of three modalities—where the in vivo 4D
flow MRI data informed the in vitro STB and in silico CFD—
in two time-varying aneurysm flow domains is a significant
contribution of this work and provided an enhanced evalu-
ation of the haemodynamic metrics. A major challenge for
any multi-modality study that uses in vivo measurements is
that no ‘ground-truth’ flow field can be established. The 4D
flow MRI maintains the highest possible level of physiological
fidelity because it does not require segmentation or assump-
tions on the flow regime and properties. However, the low
spatio-temporal resolution, voxel averaging and typically
high noise compromise the accuracy and overall reliability
of calculated haemodynamic metrics. In vitro or in silico
modalities maintain higher resolution and accuracy, but
uncertainty in the segmentation and boundary conditions
compromises the fidelity, as do modality-specific assumptions
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Figure 6. Normalized WSS distribution at peak systole for all modalities in the (a) basilar tip aneurysm and (d ) ICA aneurysm. Normalized OSI distribution for all modalities in
the (b) basilar tip aneurysm and (e) ICA aneurysm. Normalized RRT distribution in the (c) basilar tip and ( f ) ICA aneurysm. Normalization of theWSS, OSI and RRTwas done for
each modality using its own mean value. (Note: the two aneurysm geometries are not shown at the same spatial scale.) (Online version in colour.)
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The spread of OSI points was relatively symmetric, demon-
strating no significant proportional differences. The average
RRT difference was 0.48 (dynes cm−2)−1 for the STB and
0.35 (dynes cm−2)−1 for the CFD in the basilar tip aneurysm,
and 1.83 and 0.51 (dynes cm−2)−1 for the STB and CFD,
respectively, in the ICA aneurysm. A proportional difference
was observed with the RRT, but in this case, the RRT of the
VA datasets was larger in magnitude than that of the full
resolution. Thus, figure 7 confirms the varying behaviour
and sensitivity of each metric to spatial resolution.

The Bland–Altman analysis was performed to specifically
compare the in vitro and in silico TAWSS, OSI and RRT in the
aneurysmal sac to that of the in vivo 4D flow data as well as
how the spatial resolution of the in vitro and in silico datasets
affects the comparison (figure 8). In the basilar tip aneurysm
(figure 8a), the mean TAWSS difference was −8.19 and
−5.05 dynes cm−2 for STB and CFD, respectively. This chan-
ged to 0.36 dynes cm−2 for STB-VA and −0.49 dynes cm−2

for CFD-VA. The 95% CIs for the VA data reduced in range
by 54% for STB and 34% for CFD when compared with the
full resolution intervals. Similarly, for the ICA aneurysm
(figure 8b), the mean TAWSS difference was −1.12 dynes
cm−2 for STB and −7.86 dynes cm−2 for CFD. The 95% CI
limits reduced by 49 and 64% for STB-VA and CFD-VA,
respectively, when compared with the full resolution data.
Thus, the VA datasets generally maintained a better match
to the 4D flow TAWSS than the full resolution datasets. For
OSI, the mean difference was −0.05 and 0.06 for STB and
CFD, respectively, in the basilar tip aneurysm. Voxel aver-
aging had a small effect, where the mean difference
changed to 0.04 for STB and to 0.03 for CFD, while the 95%
CIs reduced by only 9% for STB and 17% for CFD. Mean
OSI differences of 0.01 for STB, 0.10 for STB-VA, 0.11 for
CFD and 0.07 for CFD-VA were observed in the ICA aneur-
ysm. The interval ranges decreased by 29% when voxel
averaged for the STB and increased by 36% when voxel

averaged for the CFD. In the basilar tip aneurysm, the
mean RRT difference was 0.16 and −0.45 (dynes cm−2)−1 for
the full resolution and VA STB, respectively, and 0.24 and
0.17 (dynes cm−2)−1 for the full resolution and VA CFD,
respectively. The CI ranges increased fivefold for the STB
when voxel averaged and threefold for the CFD when
voxel averaged. For the ICA aneurysm, the mean RRT differ-
ence was 0.33 (dynes cm−2)−1 for the full resolution STB and
−0.13 (dynes cm−2)−1 for the VA STB. The mean RRT differ-
ence was 0.97 and −0.50 (dynes cm−2)−1 for the full
resolution and VA CFD, respectively. The CIs maintained
about a fourfold increase in range for the VA STB dataset
when compared with the full resolution while the CFD
maintained about a sevenfold increase.

4. Discussion
In this work, the effects of spatio-temporal resolution and vary-
ing flow assumptions and limitations across modalities on
resultant haemodynamic metrics were assessed. The unique
implementation of three modalities—where the in vivo 4D
flow MRI data informed the in vitro STB and in silico CFD—
in two time-varying aneurysm flow domains is a significant
contribution of this work and provided an enhanced evalu-
ation of the haemodynamic metrics. A major challenge for
any multi-modality study that uses in vivo measurements is
that no ‘ground-truth’ flow field can be established. The 4D
flow MRI maintains the highest possible level of physiological
fidelity because it does not require segmentation or assump-
tions on the flow regime and properties. However, the low
spatio-temporal resolution, voxel averaging and typically
high noise compromise the accuracy and overall reliability
of calculated haemodynamic metrics. In vitro or in silico
modalities maintain higher resolution and accuracy, but
uncertainty in the segmentation and boundary conditions
compromises the fidelity, as do modality-specific assumptions
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Figure 6. Normalized WSS distribution at peak systole for all modalities in the (a) basilar tip aneurysm and (d ) ICA aneurysm. Normalized OSI distribution for all modalities in
the (b) basilar tip aneurysm and (e) ICA aneurysm. Normalized RRT distribution in the (c) basilar tip and ( f ) ICA aneurysm. Normalization of theWSS, OSI and RRTwas done for
each modality using its own mean value. (Note: the two aneurysm geometries are not shown at the same spatial scale.) (Online version in colour.)
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re-entering the distal ICA. About half of the flow exits through
themiddle cerebral artery and the remainder splits between the
anterior cerebral artery and posterior communicating artery.
The swirling flow in the aneurysmal sac was qualitatively simi-
lar for the 4D flow andCFD,while for the STB, the swirlingwas
more centred in the sac and the impinging jet was weaker. The
velocity distributions in the aneurysmal sac for all modalities
throughout the pulsatile cycle are shown in figure 4c–e
for the basilar tip aneurysm and in figure 4f–h for the ICA
aneurysm. The distributions highlight some velocity field
differences across the modalities. Similar velocity distributions
and velocity ranges were observed across all modalities for
the basilar tip aneurysm. For the u-velocity component, 95%
confidence interval (CI) ranges were ±11.4 cm s−1 for 4D flow,
±10.5 cm s−1 for STB and ±10.6 cm s−1 for CFD. For the
v-velocity component, the 95% CI ranges were ±23.7, ±22.9
and ±22.6 cm s−1 for 4D flow, STB and CFD, respectively.
The ranges for the w-velocity were ±13.9 cm s−1 for 4D flow,
±14.7 cm s−1 for STB and ±14.5 cm s−1 for CFD. In the ICA
aneurysm, all modalities maintained similar distribution
shapes; however, STB maintained lower magnitude ranges of
the velocity distributions than 4D flow and CFD. For example,
for the u-velocity component, STB maintained a 95% CI range
of ±6 cm s−1 while 4D flow MRI and CFD maintained 95% CI
ranges of ±14 cm s−1. For the v-velocity, 95% CI ranges were
±9 cm s−1 for STB and ±17 cm s−1 for 4D flow and CFD while
for the w-velocity, they were ±6 cm s−1 for STB, ±7 cm s−1 for
CFD and ±8 cm s−1 for 4D flow.

3.2. Evaluating time-averaged wall shear stress,
oscillatory shear index and relative residence time
across modalities and spatial resolutions

The previous results demonstrate that each modality rep-
resented the same underlying process, maintaining similar

large-scale flow features but with notable flow-field variations
resulting from uncertainties in the segmentation and boundary
conditions, aswell as differing spatio-temporal resolution, flow
properties and regime assumptions, and limitations across
modalities. Next, the effects of such variations on subsequent
haemodynamic metrics were evaluated.

Figure 5 shows the distributions of TAWSS, OSI and RRT
in the aneurysmal sac for all modalities for the basilar tip
aneurysm (figure 5a–c) and ICA aneurysm (figure 5d–f ).
The distributions of the TAWSS varied significantly across
all five datasets. For the basilar tip aneurysm, the average
TAWSS was 6.19 dynes cm−2 for the 4D flow, 13.88 dynes
cm−2 for the full resolution STB and 11.61 dynes cm−2 for
the full resolution CFD. When voxel averaged, the average
TAWSS decreased to 5.88 dynes cm−2 for the STB, a 58%
drop, and to 6.81 dynes cm−2 for the CFD, a 41% decrease.
For the ICA aneurysm, the TAWSS distributions of the 4D
flow, full resolution STB, and VA STB and CFD showed
agreement. The average TAWSS for STB had only a small
change from 4.06 to 3.40 dynes cm−2 when voxel averaged.
The average CFD TAWSS decreased 70% from 8.25 to
2.46 dynes cm−2 when voxel averaged. The full resolution
CFD WSS distribution maintained a larger spread of WSS
values than all other modalities and maintained the largest
WSS magnitudes. Similar OSI distributions for the basilar
tip aneurysm were observed for all modalities except the
full resolution CFD. The average OSI of the STB changed
from 0.17 to 0.08, while CFD went from 0.04 to 0.07 when
voxel averaged. For the ICA aneurysm, good agreement of
the OSI distribution and averages was observed between
4D flow and STB. The VA STB and CFD and full resolution
CFD OSI distributions and averages matched well. Voxel
averaging changed the average OSI from 0.18 to 0.06 for
STB and from 0.06 to 0.08 for CFD. The average RRT in the
basilar tip aneurysm was 0.55, 0.47 and 0.29 (dynes cm−2)−1

for the 4D flow, and full resolution STB and CFD,
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Figure 4. Velocity field instantaneous streamlines for the MRI and full resolution STB and CFD at peak systole for the (a) basilar tip aneurysm and (b) ICA aneurysm. (Note:
the two aneurysm geometries (a) and (b) are not shown at the same spatial scale.) Distributions of all velocity components throughout the entire pulsatile cycle, spatially
limited to the aneurysmal sac only for the (c–e) basilar tip and ( f–h) ICA aneurysm. The width of the probability density function (PDF) shows relative distribution density.
The mean and median values, IQRs and 95% CIs are indicated. Violin plots were made from code adapted from [39]. (Online version in colour.)
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Wall shear stress
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surgery)
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Table 1 Range of HGO parameters based on Annaidh et al. (2012) and
Tonge et al. (2013)

Parameter Range Mean

µ (MPa) [0.004774, 0.2014] 0.04498

k1 (MPa) [0.000380, 24.530] 4.9092

k2 (–) [0.133, 161.862] 76.64134

with a large dispersion (Annaidh et al. 2012; Tonge et al.
2013); hence, approximating κ = 1/3 is reasonable. Table 1
summarizes the range of HGO model parameters for human
skin based on the literature (Annaidh et al. 2012; Tonge et al.
2013).

To showcase the nonlinearity of the material response
and the effect of uncertain material properties, we show the
stress–stretch curves for three different tensile tests: uni-
axial, off-biaxial, and equibiaxial. Analytical solutions are
easily computed for these cases, and incompressibility can
be imposed exactly. We use λxx , λyy , and λzz to indicate the
amount of stretch with respect to the x, y, and z directions,
respectively. The corresponding normal stresses are σxx , σyy ,
and σzz . The uniaxial test is defined by setting σyy = σzz = 0
and varying λxx . In the off-biaxial case, we set σzz = 0 and
λyy = 1. For the equibiaxial case, σzz = 0 and λyy = λxx .
Solid lines in Fig. 1 correspond to thematerial responsewhen
the parameters are chosen to be the mean reported in Table 1.
To showcase the importance of material parameter uncer-
tainty in these simple scenarios, the parameters are assumed
uniformly distributed over the range presented in Table 1,
and 5000 values of the parameters are sampled. The gradient
shading in the plots of Fig. 1 represents varying percentile
from 2.5 to 97.5 of the resulting stress distribution.

2.2 Patient-specific model

In this study, we present the case of a 7-year-old female
who underwent resection of two large portions of the scalp
together with cranioplasty. The patient originally had resec-
tion of a giant congenital pigmented nevus in infancy thatwas
complicated by infection and led to the debridement of the
occipital calvarium. At the time of the treatment presented
here, the patient needed correction of the contour deformity
of the cranium, had residual nevus at the incision, and unsta-
ble scar with ulceration in two regions of the scalp. During
the surgery, an occipital Y-shaped scar and a right tempo-
ral C-shaped scar were resected, and the cranium defect was
fixed with a polymer implant.

We useMVS to capture the three-dimensional (3D) geom-
etry of the patient at different time points of the treatment.
MVS is based on capturing two-dimensional (2D) pictures of
a static object or scene from multiple angles. Feature match-
ing across pairs of photographs then provides information to

a

b

c

Fig. 1 Analytical solution of a uniaxial tensile test, b off-biaxial tensile
test, and c equibiaxial tensile test to showcase the HGO model. 5000
triads (µ, k1, k2) are drawn from a uniform distribution over the range
in Table 1. The gradient shading indicates varying percentile of stress
value at each stretch

solve for the camera position and orientation, and once this is
solved for many more points can be projected and matched
between photographs to generate a dense 3D point cloud
(Strecha et al. 2008). Geometries generated with Recap360
(Autodesk, San Rafael, CA) are shown in Fig. 2 (first row).
Photographs were taken pre-, intra- and postoperatively in
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Fig. 2 For multi-view stereo (MVS) reconstruction, photographs cap-
tured from several angles are used to generate a 3D geometry (first
row); a CT scan was used to generate the skull geometry (second row);
skin after tissue expander removal was assumed stress-free and used as
reference, and the MVS and CT scan geometries were combined and
simplified (third row); scalp defects were removed based on the intra-
operative MVS models, and the scalp mesh was converted to a volume
mesh (fourth row)

order to document the entire treatment with 3D snapshots.
Importantly, skin, like most biological tissues, is prestrained
in vivo. Skin after expander removal is in a relaxed config-
uration, and this geometry was taken as the reference and
assumed stress-free.

In addition to the visible patient-specific geometry
obtained with MVS, this particular case was not limited to
superficial tissue rearrangement but required correction of
the cranium. We reconstructed the skull geometry from a
CT scan that had been used clinically to design the polymer
implant (Fig. 2, second row).

As shown in Fig. 2 (third row), we performed some
post-processing steps to eliminate unnecessary parts and
simplify the patient-specific geometry without losing any
essential information. Geometry simplification was done
withMeshlab (Cignoni et al. 2008) andBlender (Amsterdam,
the Netherlands). The Y-shaped scar and right temporal C-
shaped scar were removed in our virtual procedure based on
the 3Dmodels taken intra-operatively. The triangular surface
was converted to a volumetric mesh by considering a thick-
ness of 3.6 mm. This value of thickness has been reported
for young females (Garn et al. 1954). The skin consisted
of 9962 nodes and 30,328 tetrahedral elements. Finally, the
simplified skull, which consisted of 6807 nodes and 13,608

triangular elements, was positioned inside the scalp mesh as
shown in Fig. 2 (last row).

2.3 Finite element simulations

We used Abaqus Standard (Dassault Systems, Waltham,
MA), an implicit nonlinear FE commercial software pack-
age, to run the reconstructive surgery simulations. The skull
mesh was defined as a rigid body and its position fixed. The
skin was modeled as hyperelastic and described by the HGO
strain energy function. To prevent rigid body motions and
also to capture a realistic procedure, the skin away from the
operated region was fixed.

Interaction between the scalp and skull during the surgi-
cal procedure was modeled as frictionless contact. Sutures
were imposed as axial kinematics constraints between pairs
of nodes. Namely, the nodes at the edge of both sides of a
scar were paired, and the distance between themwas linearly
decreased to simulate the clinical procedure.

2.4 Gaussian process regression

Mechanical properties of skin vary not only with age, gender,
and anatomical location, but also from one patient to another
(Daly and Odland 1979). Therefore, accounting for uncer-
tainty in the material properties of skin is essential when
analyzing the stress distribution caused by reconstructive
surgery. Propagating the uncertainty of the material behavior
through a detailed, realistic, and nonlinearmodel of a surgical
procedure, to characterize the resulting stress distribution, is
the central contribution of this manuscript.

As pointed out in Sect. 2.1, the HGOmodel requires three
independent parameters, µ, k1, and k2, when the material
under consideration is assumed isotropic.Table 1 contains the
mean and the range for each parameter. We assume that the
parameters are uniformly distributed within the range shown
in Table 1, and we use the Latin hypercube sampling algo-
rithm (LHS) to draw samples from this 3D parameter space
(McKay et al. 2000). We generate a total of N training sam-
ples in the parameter space. N should be chosen such that it
covers the parameter space and is able to capture themain fea-
tures of the data. In practice, given an initial choice of N , the
performance of the surrogate is evaluated in terms of a given
errormeasure to test if it is within a desirable tolerance. If this
is not the case, the training set is increased iteratively until
the desired error is achieved. Let x(n) = (µ(n), k(n)1 , k(n)2 ) be
one point generated by LHS, the total training data can be
arranged as

X =
(
x(1), . . . , x(N )

)
∈ R3×N . (12)
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Fig. 10 Prediction of stress distributions with the GPR for three differ-
ent input distributions of thematerial properties x1, x2, and x3.When x1,
x2, and x3 are knownwith 100% confidence (b), the predicted PC scores
follow a normal distribution (c). The mean and upper and lower bounds
of the 95% confidence interval of the von Mises stress are visualized
in (a). When the parameters are normally distributed (e), 103 PDFs of
predicted PC scores are generated by sampling the GPR for a vector

of the normally distributed inputs, leading to the mean and 95% error
bars of the PDFs for z1, z2, and z3 (f), and to the corresponding 95%
confidence interval of the von Mises stress (d). A uniform distribution
of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i)
and confidence interval of the von Mises stress (g)
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Fig. 10 Prediction of stress distributions with the GPR for three differ-
ent input distributions of thematerial properties x1, x2, and x3.When x1,
x2, and x3 are knownwith 100% confidence (b), the predicted PC scores
follow a normal distribution (c). The mean and upper and lower bounds
of the 95% confidence interval of the von Mises stress are visualized
in (a). When the parameters are normally distributed (e), 103 PDFs of
predicted PC scores are generated by sampling the GPR for a vector

of the normally distributed inputs, leading to the mean and 95% error
bars of the PDFs for z1, z2, and z3 (f), and to the corresponding 95%
confidence interval of the von Mises stress (d). A uniform distribution
of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i)
and confidence interval of the von Mises stress (g)

123

Propagation of material behavior uncertainty in a nonlinear finite element model of… 1869

a

b c

d

e

g

h i

f

Fig. 10 Prediction of stress distributions with the GPR for three differ-
ent input distributions of thematerial properties x1, x2, and x3.When x1,
x2, and x3 are knownwith 100% confidence (b), the predicted PC scores
follow a normal distribution (c). The mean and upper and lower bounds
of the 95% confidence interval of the von Mises stress are visualized
in (a). When the parameters are normally distributed (e), 103 PDFs of
predicted PC scores are generated by sampling the GPR for a vector

of the normally distributed inputs, leading to the mean and 95% error
bars of the PDFs for z1, z2, and z3 (f), and to the corresponding 95%
confidence interval of the von Mises stress (d). A uniform distribution
of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i)
and confidence interval of the von Mises stress (g)
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Figures courtesy of Buganza’s group.6



We know how to pose these 
problems mathematically!

We just can’t solve them…
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Common Solution Approaches and 
Their Computational Intractability

• All problems can, in principle, be solved by Monte Carlo sampling.

• Infeasible to do directly with physical simulator.

• Idea -> Replace the simulator with a  surrogate model. 

• Problem -> Curse of dimensionality.
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IDEA 1: Use Deep Neural Networks (DNN) to 
Represent the Response Surface
• Universal function approximators.

• Layered representation of information. 

• Tremendous success in high-dimensional applications such as image 
classification, autonomous driving.

• Availability of libraries such as tensorflow, keras, theano,  PyTorch, caffe
etc.

Tripathy, R. K.; Bilionis, I. Deep UQ: Learning Deep Neural Network Surrogate Models for High
Dimensional Uncertainty Quantification. Journal of Computational Physics 2018, 375, 565–588.
https://doi.org/10.1016/j.jcp.2018.08.036.
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IDEA 2: Get rid of PDE Solver

• Lagaris et al., 1991
• Raisi, Predikaris, Karniadakis, 2019.
• {Raisi, Perdikaris, Karniadakis, Zabaras}* {2018, 2019}.
• Karumuri, Tripathy, Bilionis, Panchal, 2019.
• …

System of 
Partial 

Differential 
Equations

Loss Function 
for DNN
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Illustrative Uncertainty 
Propagation Example With 

Physics-Informed DNN

Karumuri, S.; Tripathy, R.; Bilionis, I.; Panchal, J. Simulator-free Solution of High-
Dimensional Stochastic Elliptic Partial Differential Equations Using Deep Neural 
Networks. Journal of Computational Physics 2019 (under review). 
https://arxiv.org/abs/1902.05200. 
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Stochastic Elliptic Partial Differential Equation

12

r(a(x)ru(x)) = 0,

x = (x1, x2) 2 ⌦ = [0, 1]2,

u = 0, 8x1 = 1,

u = 1, 8x1 = 0,

@u

@n
= 0, 8x2 = 1.

PDE:

Boundary 
conditions:

Uncertain
conductivity:

log 𝑎 𝑥 =

Figure 7: (2D SBVP - GRF `x [0.05, 0.08]) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the GRF of length-scales

[0.05, 0.08] test dataset and the corresponding solution response from FVM

and DNN (middle and right columns).

31

Figure 8: (2D SBVP - Warped GRF) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the warped GRF test dataset

and the corresponding solution response from FVM and DNN (middle and

right columns).

32

Figure 10: (2D SBVP - Multiple length-scales GRF) Each row corresponds to a ran-

domly chosen realization of log-input field (left column) from the multiple

length-scales GRF test dataset and the corresponding solution response

from FVM and DNN (middle and right columns).

34

or or …
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Representing the Solution of the Stochastic 
PDE as a DNN

Finally, the dimensionality, D, of the input vector ⇠ is large, potentially of

the order of hundreds or thousands. Given a finite number of evaluations of

the simulator, the task of constructing a surrogate function, f̂ , for the true

response surface f becomes computationally infeasible without resorting to

dimensionality reduction.

2.1. Uncertainty propagation

Suppose the inputs ⇠ to the function f are not known exactly (a common

scenario in numerous engineering tasks). We formalize our beliefs about ⇠

using a suitable probability distribution:

⇠ ⇠ p(⇠). (1)

Given our beliefs about ⇠, we wish to characterize the statistical prop-

erties of the output f(⇠) such as the mean:

µf =

Z
f(⇠)p(⇠)d⇠, (2)

the variance,

�2
f =

Z �
f(⇠)� µf

�
p(⇠)d⇠, (3)

and the probability density,

pf (y) =

Z
�
�
y � f(⇠)

�
p(⇠)d⇠. (4)

This is formally known as the uncertainty propagation problem (UP).

10

Figure 7: (2D SBVP - GRF `x [0.05, 0.08]) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the GRF of length-scales

[0.05, 0.08] test dataset and the corresponding solution response from FVM

and DNN (middle and right columns).
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How to turn the PDE into a loss function? 
Integrated Squared Residual
• Move all PDE terms to the left hand side.
• Square and integrate over space/time.
• Take expectation over random parameters.
• Minimize what you get over the space of DNNs subject to any 

boundary conditions.

𝐽 𝑢 = 𝔼* +
,,. /

∇ ⋅ 𝑎 𝑥, 𝜉 ∇u 4 𝑑𝑥 .

Works, but may have lots of local minima…
Can we do better? 14



How to turn the PDE into a loss function? 
Energy-based Residual
• Write down energy functional for system.
• Take expectation over random parameters.
• Minimize what you get over the space of DNNs subject to any 

boundary conditions.

𝐽 𝑢 = 𝔼* +
,,.

4
𝑎 𝑥, 𝜉 ∥ ∇𝑢 ∥44 𝑑𝑥 .

Energy-based loss is better because you can often prove 
uniqueness of solution!

15



Integrated Square Residual vs Energy Loss

Figure 2: (1D SBVP) Box plots of relative root mean square error E based on 6 runs

for each length-scales using EF and integrated SR losses.

closely. Fig. 4 shows the histograms of the relative L2 errors and R
2 scores of

all the test samples.

3.3. Stochastic boundary value problem in 2D

Consider the following elliptic SBVP in 2D on a unit square domain -

�r · ( eA(x,!)rU(x,!)) = 0, 8x 2 X = [0, 1]2 ⇢ R2
, (41)

with boundary conditions:

U = 1, 8 x1 = 0,

U = 0, 8 x1 = 1,

n
T (x)

Ä
eA(x,!)rU(x,!)

ä
= 0, 8 x2 = 0 and x2 = 1.

(42)

Eq. (41) models steady-state di↵usion processes in 2D. The quantity eA(x,!) is a

spatially varying di↵usion coe�cient. The physical significance of the equation335

and all terms in it varies from context to context. For instance, Eq. (41) could

be a model for single-phase groundwater flow, where eA represents the perme-

ability coe�cient and the solution variable U the pressure. Similarly, Eq. (41)

24
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Numerical Examples: Point-wise Predictions

Figure 7: (2D SBVP - GRF `x [0.05, 0.08]) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the GRF of length-scales

[0.05, 0.08] test dataset and the corresponding solution response from FVM

and DNN (middle and right columns).

31

Figure 8: (2D SBVP - Warped GRF) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the warped GRF test dataset

and the corresponding solution response from FVM and DNN (middle and

right columns).

32
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Numerical Examples: Point-wise Predictions

Figure 7: (2D SBVP - GRF `x [0.05, 0.08]) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the GRF of length-scales

[0.05, 0.08] test dataset and the corresponding solution response from FVM

and DNN (middle and right columns).

31

Figure 8: (2D SBVP - Warped GRF) Each row corresponds to a randomly chosen

realization of log-input field (left column) from the warped GRF test dataset

and the corresponding solution response from FVM and DNN (middle and

right columns).

32
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Numerical Examples: Point-wise Predictions

Figure 9: (2D SBVP - Channelized field) Each row corresponds to a randomly chosen

realization of input field (left column) from the channelized field test dataset

and the corresponding solution response from FVM and DNN (middle and

right columns).

33

Figure 10: (2D SBVP - Multiple length-scales GRF) Each row corresponds to a ran-

domly chosen realization of log-input field (left column) from the multiple

length-scales GRF test dataset and the corresponding solution response

from FVM and DNN (middle and right columns).

34
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Ending Remarks

• Lot’s of nuances that did not talk about (see paper).
• Can we ditch traditional solvers completely?
• How to pose inverse problems?
• How to pose design problems?
• Best DNN structures?
• Best optimization algorithms?
• Bayesian formulation?

20



Thank you
ibilion@purdue.edu
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But how do I do the integrals?

• You don’t have to do the integrals.
• All you need is the ability to sample:
• uniformly in spatial domain
• random parameters

• This is sufficient to construct stochastic algorithms that provably 
converge to a local minimum of the loss (Robbins-Monro, 1956).

22



Numerical Examples: Results Summary

Figure 6: (2D SBVP) Samples from the 4 di↵erent input field datasets i.e. GRF,

warped GRF, channelized field and multiple length-scales GRF over a uni-

form grid of 32⇥32. Log input field samples are shown except the channelized

field.

29

Datasets K L n Number of

test samples

E Number of train-

able parameters ✓

GRF `x [0.05, 0.08] 3 2 350 2,000 4.45% 1,096,901

Warped GRF 5 2 300 1,000 4.68% 1,211,401

Channelized field 3 2 300 512 5.30% 850,201

Multiple length-scales GRF 3 2 500 9,000 3.86% 2,017,001

Table 3: (2D SBVP) ResNet architecture of the 4 DNN approximators and relative

root mean square error E for test samples with these networks.

for each of the DNN approximators and the estimates of E over all the samples

in their respective test datasets. We see that all the DNNs predict well very380

with E less than 5.31%. Training these DNN’s took around 5 to 7 hours of

computational time depending on the size of the network.

Figs. 7 - 10 show a comparison of the SPDE solution predicted by the 4 DNN

approximators vs solution obtained from the FVM solver for 4 randomly chosen

test samples of their corresponding input fields. We see from the above figures385

that DNNs are able to capture fine-scale features in the solution responses.

Fig. 11 shows histograms of relative L2 errors and R
2 scores of the 4 DNN

approximators over all the samples in their respective test dataset.

We also trained a DNN over all the train samples of the 4 input field datasets

discussed before. This DNN was trained with same optimizer settings and batch390

sizes as the previous 4 DNN approximators, and has a ResNet architecture (see

Fig. 1a) of K = 2 residual blocks each with L = 2 layers having n = 500 neurons

each. The E over all the test samples in 4 datasets comes out to be 4.56%. From

Fig. 12 we see that this DNN (single DNN) is able to predict the solution

response for all the input test datasets very well except the channelized fields.395

This is likely caused by the small number of training samples in the channelized

field dataset compared to others. So if an equal proportion of train samples

from all the datasets are given during training then the network performance

could be improved further. Fig. 13 shows comparison plots of DNN and FVM

30
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Numerical Examples: One DNN for all fields?

Figure 12: (2D SBVP - Single DNN) Relative root mean square error, E comparison

for the 4 input field test datasets between a separate DNN approximator

vs a single DNN approximator.

predictions for a few randomly chosen test samples. Fig. 14 shows histograms of400

relative L2 errors and R
2 scores for all the test samples of 4 input field datasets.

From this study we see that given su�cient amount of train data of all types of

fields a single DNN has the potential to learn all the solution responses.

3.4. Testing DNNs generalizability to out-of-distribution inputs

The generalization capability of our trained DNN approximators in the be-405

fore section to out-of-distribution input data/new input distribution data not

seen in training is examined here by considering the following 3 cases-

Note that similar to the previous example, all the out-of-distribution input

field samples discussed below are also constrained uniformly by a lower bound

0.005 and an upper bound 33.410

Case A: Here we study the generalizabilty of DNN approximator trained

with GRF of length-scales [0.05, 0.08] dataset (in Sec. 3.3) to 4 sets of out-of-

distribution input data which are GRF with a larger length-scale of [0.3, 0.4] and

variance of 0.75, GRF with a smaller length-scale of [0.03, 0.04] and variance of

36

24



Numerical Results: Transfer Learning

• Trained on GRF with multiple length scales predicting on other:

Figure 15: (Generalizability test - Case A) Relative root mean square error, E of four

out-of-distribution input datasets, each with 512 samples tested on DNN

trained with input field samples from GRF of length-scales [0.05, 0.08].

in this arbitrary length-scales dataset. From this study we observe very good

generalizability of our Resnet to predict solutions of SPDE corresponding to

even length-scales not used in its training.435

Case C: We also test the generalizabilty of DNN approximator trained with

multiple length-scales GRF dataset (in Sec. 3.3) on stratified (or 2-layered) input

fields. Stratified fields are generated by dividing the spatial region X into two

parts - X1 and X2 through a line joining the two points (0, a) and (1, b). a

and b are sampled independently from U([0, 1]). The stratified input fields are

modeled as follows:

log( eA(x,!)) ⇠ �
2
⇣
GP(0, k1(x, x

0))IX1
(x) + GP(0, k2(x, x

0))IX2
(x)

⌘
, (49)

where, IA(·) is the indicator function, �2 = 0.75 is the variance and k1 and

k2 are exponential covariance kernels, each with their own unique length-scale

pair. We generate 1000 such samples and the relative root mean square error,

E between the DNN and FVM solutions is 3.8%. Fig. 20 shows a comparison of

the SPDE solutions obtained from the FVM solver and the DNN predictions for440
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